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ABSTRACT
the suther
! - » To a multivariate stationary stochastic process, -we associatesa scattering
- matrix S, which measures the interaction between the past and future

of the process. This matrix valued function can be viewed as the
generalized phase function associated with the spectral density. It
determines the density up to congruency only for a completely
non-deterministic sequence. c ,
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Using the Etzory of A,tfamjan—Arov-Krein on extensipns of Hankel
operators, establj,éhﬁ&hat the Hankel operator H[ determines the
Laurent operator Ly as its unique norm preserving lifting. Employing
2 the Nagy-Foiag theory on unitary dilations, or its dual, Lax-Phillips
- scattering operator model, we develop a realization theory for equivalent
: classes of stationary sequences with the same density The minimal
equivalence class of Markovian representations is induced by the coprime
factorization of the scattering matrix. This presents a unified approach
to stochastic and deterministic realization theory, with S as the analog
. of the frequency response function.
- Fae s thor
To obtain reduced order models, we approximatesthe given sequence
with a jointly stationary one of a lower dimensional state space,
minimizing the distance between the two sequences._ The solution which
- involves H. is non-constructive. We pose a weaker yersion, leading to
N . a Hankel a'gproximation of Ho.. The algorithm employs\the analytic
properties of Schmidt pairs ?or a Hankel operator. An‘error bound on
N the normalized difference between the covariance functioni of the two
sequernces is obtained.
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CHAPTER 1

INTRODUCTION

S The work of Adamjan-Arov on scattering [2], and their subsequent
investigations of Hankel operators and various approximation, inter-

polation, and extension problems connected with them [1], [3] - [7],

has by and large not been used for the study of stationary discrete time
- stochastic processes (stationary sequences). Our work is a study of

b the ramifications of their work in the context of stationary sequences.

For deterministic linear systems, their work on Hankel norm approximations
has recently received considerable attention. In our view, this is

h due to the fact that the input-output approach gives the Hankel norm
approximation a physically appealing interpretation (see Chapter 8).

For stationary sequences, however, the probabilistic information is
available in the form of the spectral density fyy of the p-dimensional
sequence {y(n)}f; (or equivalently the covarian—ce function) and there

is no obvious candidate which plays the role of an input-output map.

This is now well known, for example, in the context of stochastic
realization theory (cf. also the work of Willems [42]). Looking for an
object which plays the role of an input-output map has some conceptual,
as well as practical, ramifications. Conceptually, it presents us with

a unified approach to deterministic and stochastic realization theory.
On a more practical level, it provides us with some justification as to
'what' should be approximated when dealing with the model reduction

problem.

'''''''''''
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In this study, we associate with every centered regular full rank
stationary process y a scattering matrix S which measures the interaction
between the past and future of the process. It may be considered to be
a mapping which maps the backward innovations of the process to the
forward innovations of the process (see Chapter 3). In the 1-dimensional
case, this scattering function is essentially the phase function of the
outer faclor of the density (and hence can be considered as the phase
function sssociated with the density).

The question as to when the phase function (for a 1-dimensional
process) determines the density of the process (up to a positive scalar
multiple) was investigated by Levinson-McKean [28]). They proved that
this is true iff (if and only if) the process has the completely non-
deterministic property, namely, no value in its (strict) future space
(that is, the space spanned by the values y(1), y(2), . . .) can be
linearly predicted without error based on its past space (that is, the
space spanned by y(0), y(-1), . . . ). This property is stronger than
regularity in which no future value of the process can be linearly predicted
without error based on its past space [9]. For the vector case, not only
does the approach in [28] not generalize, but, in addition, it is not
clear what is the right notion of a phase (matrix valued) function to
associate with a density. That our scattering matrix S can be viewed as
the right generalization can be supported by the fact that S determines
the density up to congruency (that is, up to the form K*f}%)K) iff the
process is completely non-deterministic (Theorems 4.5, 4.83: Those
scattering matrices which correspond to regular full rank completely
non-deterministic processes are characterized in Theorem 4.13.

In deterministic systems realization theory, for a causal frequency

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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response function ¢ we have the general principle [23, p. 24] that the
Hankel operator H 5 (the composition of the reachability and observability
maps) determines (the causal) ¢ up to an additive constant. Assuming
¢(0) = [0], the general principle can be rephrased by saying that

H¢ admits a unique causal lifting to the Laurent operator L  (input-output

¢
map). In the case of stationary sequences the Hankel operator HS

+
admits a unique norm preserving lifting L, (Theorem 4.4). This

S
property can be given a variational characterization, namely, S is the

unigue solution to
min{||F||_: FeL (B(CP)), ¢, (F) = ¢, (S) , k = -1, -2, ...}
w = k Kk

where ck(F) is the k-th Fourier coefficient of F.

That the scattering matrix can be viewed as an analog to the
frequency response function in systems is further strengthened by the
role we show it plays in Markovian representations (realizations) of
stationary sequences. A subspace X in the span Hy of y is a Markovian
representation for the sequence {y(n)}_czo if the pro;ess {Unx,‘_mOo
(U being the shift on Hy) has the (weak) Markov property (Definition
6.1), and yl(O), e . -, yp(O) are contained in X. The dynamical
representations are thereby readily obtained (Sections 6,7).

Ruckebusch [37], Lindquist-Picci [23] develop a realization theory

for stationary sequences in which every Markovian representation is in

* In the terminology of {4], S is the unique minifunction for H .

M Each such F can be viewed as an extension of Hg [4]. The
parametrization of all those extensions seems to be strongly related to
the covariance extension problem.

1
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1-1 correspondence with a factorization of the spectral density.

In our view, having the spectral density as the only probabilistic
information available to us implies that two stationary sequences in HY
having the same density (a.e.) are indistinguishable (equivalent). Thus,
two geometrically (and probabilistically) different Markov processes in
Hy inducing identical dynamical representations (see Theorems 6.12, 7.1)
should be considered equivalent. This equivalence relation between
Markov processes is available to us via the characteristic function of
Nagy-Foias associated with a (completely non-unitary) contraction or its
corresponding (completely non-unitary) semigroup of contractions [30].
Indeed, we demonstrate that for a subspace XCHX the (full range,
regular) process {Unx}_ozo is (weakly) Markov iff the state transition
operator A, which is the compression of U to X, has U as its minimal
unitary power dilation in Hy (Proposition 6.2), and, moreover, A is of
class Cy, + (Corollary 6.5). Thus {A" }nZO is a C00 semigroup of
contractions. The equivalence relation between Markov processes will
be based upon this Markov semigroup.. In view of the dual relationship
between the Lax-Phillips scattering operator model and dilation theory
[2], there is set up a 1-1 correspondence between a Markov process
{U"x}_ : and a Lax-Phillips scattering system (Theorem 6.4). According
to a fundamental result of Nagy-Foiag [30, Th. VI.2.5] the characteristic
function of a C00 contraction induces a model space (the functional
model), and under the so-called (Nagy-Foiag) incoming spectral
representation, the action of this contraction on the model space is the

restricted shift (the model operator). Thus, two contractions having

+

. n »11
i.e., A +0, A -0 strongly.
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coinciding * characteristic functions are unitarily equivalent, and so

are their corresponding semigroups. Noting (as was established in [2])
that the characteristic function of A coincides with the scattering matrix
Ox + of the aforementioned scattering system induced by {UnX}_‘:, we
establish in this way an equivalence relation between Markov processes
(thus abandoning the 1-1 correspondence with their scattering systems)
which is based upon the coincidence of their scattering matrices
(characteristic functions), that is, the unitary equivalence between their
corresponding Markov semigroups. This enabled us to demonstrate that
two stationary sequences are equivalent iff they possess identical
dynamical representations induced by equivalent Markov processes which
represent them (Theorems 6.12, 7.1). We next show (Theorem 6.10)
that there exists a 1-1 correspondence between the equivalent classes of
(full range, regular) Markov processes and the purely contractive
analytic functions ~eH OO(B(Cp )) which are inner. Among those inner
functions we wish to choose those and only those which are (via the
above correspondence) a representation for the stationary sequence
{y(n) }_Z or a sequence equivalent to it. This is accomplished in Theorem
7.2. Thus, the desired family of inner functions are those and only
those ¢, which factor the scattering matrix S: S = 61*62, 626 Hw(B(Cp)).
The left coprime factorization S = Ql* Q2 induces the minimal equivalent
class i (Theorem 7.3). This is in direct agreement with deterministic

systems realization.

* Definition 6. 8.

+ This function coincides with the structural function of Lindquist-
Picci [29].

++

A corresponding result holds for the right factorizations.
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Having associated an inner function © to each Markov process
{UnX }_:, there is a natural degree associated with it, namely, d(0) =
det G * Accordingly we obtain d(Q ) d(@l) that is, the minimal
class is of the weakest degree. Our approach enables us (by inspection)

to derive the fact that a Markovian representation is minimal iff it is

observable and constructible, and exact observability and constructibility
hold iff range HS is closed.
The scattering approach was found to be useful in various prediction

and interpolation problems of stationary processes. This was demonstrated

Con o, sy
o e INDAMARMEAEA
v T e e

by Adamjan-Arov in [3]. They consider a general situation in which
+
for two jointly stationary 1l-dimensional processes £,n we are given

the past H,_}(O) of n,and the future HY(m) (m > 0) of £, and we wish to

LA i)
ARV N
RENERR RS T

linearly predict n(k), k > 0 based on H;(O)VHf.(m). This general set-up
is applicable to prediction, interpolation, and filtering. By posing the
problem in terms of incoming and outgoing data, the corresponding

scattering matrix can be computed and the predictor expressed in terms

- of this scattering matrix. Thus, generally speaking, this approach
transforms the projections in the space of values of the processes into

the corresponding ones in L, in which a solution can be obtained.

2
Another area in which the scattering matrix appears to have

considerable appeal is in model reduction. As the only accessible data
is the spectral density fyy' we would ultimately be concerned with
obtaining rational approximations to this density. We formulate (Chapter

8) two problems in model reduction both of which involve the Hankel

operator HS. In Problem A we wish to approximate the p-dimensional

*Its scalar muiltiple in the terminology of {30].

** As they point out, their approach generalizes to the vector case.

. .. ........................................................
...............
..............
.........
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Process y with a p-dimensional process i of reduced ‘order m, in such

a way that the 'distance' between them

€ = sup{llyj(n) - 3\7].(n)|lH :j=1, ..., p, neZ}
y

is minimized. The motivation for Problem A stems from the fact that for

the covariances {Cn}_":O , 1C }_: of y, Q we then obtain

n
. P 3
lc, - € ll< 2/ {]Z; oy:yj}

We give a solution (generally non-unique) to the above problem (Theorem
8.2) which, however, can not be obtained in a constructive fashion.

This problem leads naturally to a weaker version of finding an inner
function QEHOO(B(CP)) of degree d(Q) < m such that HHQS{} = min.
(Problem B). This is a Hankel approximation problem in disguise. For
the p = 1 dimensional case we obtain a constructive solution in the
following fashion: We consider the rank m Hankel approximant H

S
v
m
to Hs' The desired function g is obtained by

H, © qH, = range Hq)m

and is constructed from the Schmidt pairs corresponding to the m-th
singular value sm(H §)e On the Markov subspace corresponding to q
we project y(0) and thereby obtain a process ¥ whose density f};}; is
of degree at most m, and for its moments we obtain the bound

(Proposition 8.5)

* The vector case can not be treated in generality since Hq, is
in general not necessarily strictly non-cyclic. m




SZSm(Hs) , n=20, #&, ... .

In closing we mention that various properties of stationary processes
were found to be reflected in HS (or S), such as the strong mixing

property, complete non-determinism, and strict non-cyclicity.
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CHAPTER TWO
NOTATION

Z stands for the set of integers, §(n) for the indicator function of
{0}CZ, C the complex numbers, and for acC a denotes the complex conjugate
of a. For a matrix A = (ai_)p we denote by A* the Hermitian conjugate

i,j=1

of A : A¥ = (bij)p bij= aji’ and by A' its transposition. For a family
i,j=1

of subsets {Mj}j of a Hilbert space H, we denote by YMJ. the smallest closed
linear manifold (subspace) that includes each M]., and by g\.i‘.lj the greatest
subspace contained in each of them (their intersection). :\f_lj denotes the
closure of Mj in H. For subspaces M,N of H, MON denotes the
orthogonal complement of N in M. For a countable family {Mj}. of mutually
orthogonal subspaces : Mi * Mj i#j, we let Z @Mj be their]orthogonal
sum. PM stands for the orthogonal projection Jof H onto the subspace M.
For a bounded linear operator A : H1 > H2 of Hilbert space Hl into Hz,

we denote by [A] the matrix of A with respect to specified orthonormal

bases in H ,H_. A|M stands for the restriction of A to the subspace

1’72
MCHI' B(HI’HZ) denotes the Banach space of all bounded linear operator
from Hl into I-I2 with B(H) = B(H,H).

By ly(-%, = N) we denote the usual Hilbert space of sequenccs {h,}"

j:-oo
with values in (the Hilbert space) N for whichz:]lhj H2 < o,
i N
12(0,oo; N), 12(-m,-1; N) are seen naturally as subspaces of 12(-00, «; N).
L2,meiu denote respectively the Lebesgue spaces on the circle

T = {e”‘ : Ae[-7,m]} (with respect to the normalized Legesque measure
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g—:;) of square integrable, essentially bounded complex valued functions.

Each function can be viewed as defined as [-m,n]. Similarly for the

spaces L2(Cp) , Lm(Cp) of functions f taking values in cP for which

[|£¢+) ”c Ly G )Hcpe L_ respectively. L_(B(CP)) is defined

analogously for weakly measurable, B(Cp) valued functions f for which ’

ess. sup{llf(en)H p. Xe[- T, M)} < e,
B(C*)

- o
H2 are the subspaces of L2 defined by
™
+ o1 iX, —inX _ _
HZ_{feLz.—ﬁ_fnf(e ye PA gy =0, n= 1,—2,...}

m
- _ 1 iX, ~in) _ _ }
Hy = {feL, : &~ [teHe ™ ax =0, n=0, 1,2, ...0 ,

and we have the orthogonal decomposition L, = H; ® H,

, - Each fen!

2
having a Fourier series

iA, g~ _inA
f(e") ~ Eane
0
generates the function
g(z) = Z:anzn
0

belonging to the Hardy class H2 of functions g(z) holomorphic in |z|<1

and such that

.
1 ir, 2. 13

llglly = sup [——— g(re'") ol <

BH, = g peil T -/nl o
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1 }\

Moreover, the (a.e. existing) radial limit g(e™") of g(z) equals f(eU‘)

a.e. and ||fl|L2 = [lgllﬂz. The function g(z) is seen as the analytic

extension of f«H; to the unit disc |z| <1 and is denoted by f(z). We

+
2 2

conjugation with respect to the unit circle (z » %), by the reflection

identify H, with H, and denote them commonly by HZ' Using the

bl Sedndhed aboatod,

principle, for feHZC L2 the function ;‘ defined by f‘(ev‘) = f(el)‘) has an

2

Ly

analytic extension to |z|>1 : f(%), which we again denote by f. The

space ﬁz = {feL2 : f‘eHz} is the space of functions feL, having an analytic i

extension to the exterior of the disc f(z) and we have
il 3 ':
id, 2
lflly, = sup [—zl—ﬂ J1tcoe™] dx] : ]
2 p>1 -1 4

feH, are called conjugate analytic.

2
+
Analogously for the Banach space L we have the subspaces Hcc = ch Lm

of functions feL having an analytic extension f(z) to |z| < 1 with

el = sue leol = litlly

Similarly, for the Hilbert space Lz(cp) we have the subspaces H;(cp) =

Hz(cp) , H-z(cp) with the orthogonal decomposition L2(cp) = H2(Cp) ® ?

H_z(cp). In L (B(cP)), again HW(B(CP)) is defined as the subspace of
o0

P T AL DN

functions in Lm(B(Cp )) whose negatively indexed (matrix valued) Fourier
coefficients vanish. For eeHw(B(Cp)) the function o* defined by

o"e!®) = [oe!’))* is identified with its snalytic extension ¢"(}) =

od)* to |z| > 1.
Z
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A function feH_ is called inner if |f(e1>‘)| =1 a.e. . Similarly for

oeH_(B(CP)) if oe™) is unitary a.e. . feH, is called outer if V{x g} =
. 20
ix ?

l-l2 where x denotes the function on T defined by x(el)‘) =e For

¢eLm(B(Cp)) the Toeplitz operator T¢ : HZ(CP) - HZ(CP) whose matrix is

block Toeplitz with respect to the standard basis {eﬂ()‘e1 ,elk)‘e2 ,elm‘e }

ol
{el,ez,... .ep} being the standard basis in CP, is defined by T¢f = ka?
TT+(¢f) where T is the Riesz projection of L2(Cp) onto Hz(Cp). H¢ will
denote the Hankel operator [with block Hankel matrix with respect to the
standard bases in Hz(Cp), H;(Cp)] H,: H2(Cp) > H;(Cp) defined by

Hyf = _(¢f), T being the Riesz projection of Lz(Cp) onto H, (€P). The

convention we employ regarding a Hankel operator as acting from HZ(Cp)

into H;(Cp) is not in accordance with the one employed in systems theory,
- in which we act on H;(Cp) into Hy(CP) : H of = 1,60, It, however,

- conforms with the one employed by Adamjan-Arov-Krein and enables us

to use their results without modifications, as well as to refer to them.
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CHAPTER THREE
THE SCATTERING OPERATOR MODEL AND THE SCATTERING

MATRIX ASSOCIATED WITH A STATIONARY STOCHASTIC PROCESS
»:' i
:-_ Let H be a complex separable Hilbert space and let U be a unitary
- operator on H. A subspace D, is said to be outgoing for (U,H) if it
! satisfies

¢9) UD+C D,

‘e 09 n - I
(3.1)+ (i1) _.;)U D+- {0}
i) vuD,=H

-0

A subspace D_ for which

) UD_cD.
B.1. @ fu"p_ = U
Gi) Vu™p_ =H

is said to be incoming for (U,H).

3.1 Definition. A quadruple (U,H,D+,D_) satisfying (3.1) is said to

be a scattering system.

We shall be interested in a scattering system arising in the following way.

Let (., P) be a fixed probability space and let
vy ()

{z(n) : neZ} , Z(n) = yz(n)

s'rp(n)

..............
..................................................................................................
e T e T T T N N e T N T T N T T T T T e e B T P T

.......

--------
-------------
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be a centered stationary process with y].(n)e;l’z(ﬂ,;é P) j=1, ..., p.

Let fyy()\) = (f (X)) , Ae[-m,7] be its spectral density satisfying
2 K,j=1
1 it
(3.2) - [ log det £, () dr > -,

i.e., the process is regular and of maximal rank.

Let

H = Hy = nVsZ{yl(n), yo(m), ..o, yp(n)}Ci‘z(Q,Jl,P),

be the space spanned by the process and let U be the unitary shift

operator on H associated with the y process [36, p. 14]:
ij(n) = yj(n+1) j=1,..., p, neZ

We consider the past and future of {y(n)}ojm defined by

D_=H_ (0) -V{Yl(k),.... y. . (kK)}, D = H (0) —V{yl(k),---, y. (k) }.
y k<0 p k>0 p

By (3.1) it follows [36, Th. II.6.1]

We readily obtain that (U,H,D_,D_) is a scattering system.

3.2 Theorem (Translation Representation Theorem [27, Th. II.1.1]).
Let (U,H,D+) be outgoing. Then there exists a Hilbert space N, and a

unitary map r, of H onto l,(-=, =; N.) such that




.....

......

.......
------------------------------------------
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() D =1,00,=N)) ,

(3.3)

. _ -1
(ii) U+ = r+Ur+

is the right shift operator on 12(- ©,o;N.). This representation is unique

up to automorphisms of N+.

Proof (ef. [2, p. 77]). By (3.1)_ -ii the operator U[D+ is an isometry
having no unitary part. By Wold's decomposition theorem {30, Th.Il.l.1]

we may write uniquely
- = n —
(3.4) D, = ,?::o@” N, N, =D ,OUD, .
Since for any m > 0
-m -m —m, L k m
U ™D, =U [(D+@UmD+)@UmD+]=b [(kz_joe) UN) ® U'D,) =
=(2X ® U'N) @D, ,
k=-1

we obtain by (3.1 -iii) that

= n
(3.5) H=;® uN,

It follows that for arbitrary heH
= n -n 2 = -n, ;2
h = Z;G)U Py U Inllg = -Zw Py U hilg

Hence the map

......................



defined by

is isometric. Since for {hn}jfolz('“’ ©; N.), h = ZUnhneH, the map r_

is onto and thus unitary. By (3.4) we obtain (i). From (3.6)

= -(n-1) -
r Uh = PNiU h} _ .= U (rh)

and (ii) follows. By (3.5) U is a bilateral shift of multiplicity equal to

dim N+ and the uniqueness follows. <
3.3 Definition. The representation (U_, 1,0, =3 N ), ly(-=,; N )) is
called an outgoing translation representation.

For (U,H,D_) incoming we similarly obtain

0
(3.7) D = Z @ U"N_ N_=D_O U'D_ ,

n=-«

and
(3.8) H= ) ©U'N_.
For the corresponding map r of H onto ly(- o, ©; N_) we define

(3.9) rho= (P UM Dpy”

- n:—w
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Thus

@) r_[D_] =l,¢-%, -1 N)

(i) U_ =r url

is the right shift on l,(- =, =N_). The representation (U_, 15 (-, -1; N),
12(—°°, ©; N )) is called an incoming translation representation.
Now let (U,H,D_,D_) be the scattering system associated with the

*
regular maximal rank y process. The subspace N. =D_O U D_

(N+ = D+G) UD+) is the forward (backward) innovation subspace at n = 0.

Since for a scattering system (U,H,D+,D_) we have

dim N_ = multiplicity U = dim N,

' A A0 PR A4 ——
A ot

we can arrange the maps r,  to be onto 1y (= o0, o cP).
3.4 Definition ([2],{27]). The operator

- —1. o  «: (P —oooo'p
S=rr. Lo, CP) > L = CP)

D Ty Ty, o—
A L Ve

is called the abstract scattering operator.

Clearly S is unitary. Denoting by V the right shift on 12(—°°,°°; Cp),

we readily obtain by the translation representation theorem.

- -1y - -1
(3.10) SV=rr "'V=r U~ =VS

Let F : 12(-00, ; Cp) -+ Lz(Cp) be the Fourier transform operator. The

2 unitary operator

Fse L. L,c®) » Ly(cP)
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thus commutes by (3.10) with LX' the operator of multiplication by .
It follows [11] that FSF~1 is a Laurent operator Lg, SeLw(B(Cp)) such

that
S(elk)
a.e. is a unitary map on cP,

3.5 Definition ([2],[27]). S is called the scattering matrix.

It is clear from the translation representation theorem that S is determined
to within right and left multiplication by unitary transformations on cP

(i.e., to within coincidence, see Definition 6.8).

We next compute the scattering matrix S for the y process. Let
{vl(O), cees vp(O)} be an orthonormal basis for N_. Let uj(n) =

U“v]. (0) and define

\l(n)
~_J(n) =< : ) neZ
vp(n)

By (3.8), the process )(n)} 1s a (centered) white noise process

with covariance R ,(n) = S(m)I p’ constituting the forward innovation
g c

process for the y process. It is determined up to a choice of basis in

N_. By (3.7), we may write

o]

(3.11)  y(0) =ZA(k)v(k) A = GNP AG) = [0] k>0,
- - ,] =1

(Wold's representation cf. (36, p. 56]). It follows from (3.9)
P w
ry (0 = {z (k1) o (O}

] = %jm k= -o




...........

...........................

Identifying N_ with cp we readily obtain the representation

Ole(k+l) @
(3.12) S ACRS | ajp'(k+1)>}
k=-c

Consider the function

ORI T

Z 2 laij(k)lz < zllly].(O)HIz{ <
j=

k==i,j=1

A(2Z) is analytic in |z| >1. For A(z) we have [36, p. 57]

(3.13) Z—ITTA*(Z)A(Z) =f ()

f
yy
By the incoming properties
inx

HycP) = v ("™ neha : aecPy

n<0
i.e., A is conjugate outer [21, p. 121]. From (3.12)

Fr_y(0), ... Fry (0)) = XA,

Since the translates (in H).’) of yl(O), ceey yp(O) and their linear

combinations are dense in HX’ Fr_ is determined by the above expression.
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We now consider the outgoing representation. Let {51(0) y cees ep(O)}

be an orthonormal basis in N 4+ We similarly obtain

k<0.

y© = D B B = (80P, BG) =10)

This representation constitutes the representation of y(0) in terms of
€,(n)
the backward innovation process {;:(n)}:o » £(n) =< 1} ) .

€ (n)
We define p

T'(z) = ZB' (}:)zk
0

which is analytic in |z| <1. In a similar fashion to (3.13), we obtain by

direct computation

1 s ia
(3.15) E—N-F*(z);(z)—fyy(k) z

I
o

with [ being outer. Also

L]
'3

(3.16) (Fr+y1(0), C e e Fr+yp(0))

Combining (3.14) with (3.16), we obtain

Sr =

P
N

and thus
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a.e. Ae[-m, m] . We thus obtained

3.6 Theorem. For a regular maximal rank process {y(n)} we have
(3.17) S = XAT ~ ,

where S is determined up to left and right multiplication by constant

unitary matrices.

For the case p = 1 we have

<o

3.7 Corollary. For a regular process {y(n);_

(3.18) s = Xt

and s is determined up to multiplication by a constant of unit modulus.

Proof. The outer function 1 satisfies !.|=|T|on T and thus 4 = ;T

a.e. where 7 is a constant of unit modulus.

3.8 Remark. The scattering matrix S was defined by an outer and

conjugate outer factors of the density fyy' Since those are determined

up to left multiplication by a constant unitary matrix, we may wish to make
a canonical choice (which amounts to choosing specific orthonormal bases

in N_,N_) in the following fashion: For I'(0) we consider its polar
decomposition (0) = KP (K unitary, P > 0) and define T,(z) = K 'I(2).

For ', we have 1"1(0) > 0 and (3.15) holds. This I, is unique. Similarly

1 1
for A. In this way, the density fyy will have a unique S associated with

it. From the viewpoint of seeing S as the phase function associated with

f this may be appealing. Note, however, that S measures the

vy’

DA A A A T A i e A e Se it Sede il A S Al il Sad sd Jad 0
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interaction between the past and future of the process y (see discussion
following theorem 4.5) and uniqueness in the reverse direction (from S
to f__ ) is not possible.
yy
2
b'.‘
.
b
»-
N S i e T et e ey
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CHAPTER FOUR

THE INDUCED HANKEL AND TOEPLITZ OPERATORS

We call the unitary maps F_ = Fr_, F = Fr+ - the incoming and

outgoing spectral representations, respectively.

4.1 Proposition. We have

—

()  F.[D_] = HycP)

,
TV S ENOWRET - ORI

.s _ p
h () F_[D.] = SH2(C )

(i) F_(Uh) = "F_h heH

i Proof. (i) and (iii) follow from the properties of the incoming translation

representation. By the definition of § we obtain

FID,l = (Fr_r]'FY) Fr D] = SHy(CP)

is unitarily equivalent to the Toeplitz operator Ts.

+

‘ 4

4.2 Lemma. The operator h
P_P+ D+->D_ , P1=PD+ g’

k

is unitarily equivalent to the Hankel operator HS , and the operator ,J
l

3

-~ 1

PDt P D,»D_ :1

g

4
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Proof. For heD+ and f = F+h we have

% *
F(®P)F.f= FPh=FPF FF.f=(FP_F)St

Since
FPF* =
we obtain
F.(PP) F, f=HS feH,

and the following diagram commutes

U

D—
l F_
(cPy- —>H2(Cp)

Hg

The unitarity of F_.F+ implies that P_P+ is unitary equivalent to H

This proves the first part. Now since

= T.f

* * *
F(yP)F f= FFf-FPFf=5f-n8f=nsf=Tg

the following diagram commutes

...... R A W R TR

s’




'1
]
4
o

30 ;
|
|

P 4 '
D—
D, > D*
F, F_
Hy(CP) ————> H,(cP)
Tg
which proves the second part.
<
4.3 Lemma. For HS, TS we have the identity
HiH_+ ToT. = 1
st Tsts T oy
Proof, Clearly,
Hig= (s H (P
Sg = TT+( g) ge 2( )
It follows that for feH,(C Py,
H* H _ * _ % _
S Sf =S [ (D] = 7S [(ILZ(CP)- T)Sf]l =
= 7T+S Sf - 1'.+S 7*+Sf =f - TS Tsf
<

By a theorem of Nehari [31] (a vector generalization of which was obtained

by Sarason [41]), for a bounded Hankel operator H , ¢eL_ there exists
¢

a function ¢ fLm such that H 6= H and

¢N
(4.1) B =it
------- AR
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Since always |]H¢H < H%IIQo because of (4.1), ¢, is called a minifunction
for H(’ {5, p. 6]. The question regarding the uniqueness of the
minifunction is of particular interest to us. In system realization theory
for a frequency response function ¢¢H_ (same reasoning holds for the
vector case), a central role is played by the Hankel operator Hq) :

H, » Hy, Hf = m (¢f). Now observe that if &,%¢H, are such that
H¢1 = H¢2 then H¢1_¢25 0, and the positive Fourier coefficients of ¢1- ¢2
vanish. Thus ¢>1- ¢2 = const. and H¢ determines (the analytic) ¢ up to
an additive constant (recall in this regard that the composition of the
reachability and observability maps determine the frequency response
function up to an additive constant). However, in general, (4.1) does
not hold and the uniqueness of ¢ inducing H¢ is guaranteed by
analyticity (causality). In view of the central role played by S in

realization of stationary sequences (Chapter 7), the following theorem is

of significance:

4.4 Theorem. The Hankel operator Hg determines S uniquely. Indeed,

S is its unique minifunction.

Proof. From Lemma 4.3 we note that f(KerTS iff f is an eigenvector of
* . . . orpr-1

HgHg corresponding to the eigenvalue [[Hg|| =1. Since S = XAT

every column of I belongs to this kernel. Thus, the projection of the

above eigenspace on the first coordinate in 12(0,°°; CP) spans [(0). Now

observe that for I'(0) we have, because of its outer property in H2(B(Cp)),

(see e.g. [36, p. 76])

- T

detI(0) 1

log [etIO] _ L (et t (hah > -
@-)P/2 am f-n & Ty

............
........................

..........
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so that ' (0) is of full rank. We conclude that the aforementioned
projection is onto the first coordinate space. According to a result of

Adamjan-Arov-Kkrein [4, Corollary 3.1] for a Hankel operator H ¢ to

have a unique minifunction, it is sufficient that the projection of the

eigenspace of H;H 5

q space be onto. The result follows. <

corresponding to ||H¢ || on the first coordinate

There is an alternative way to rephrase Theorem 4.4. If we

F consider the Laurent operator L¢ of multiplication by @u on L2, then
X H

(4.1) becomes

H

F a1l = Iz, i

Since

H = P,L, |H
$ H2¢p2

one considers L. as norm preserving lifting of H Thus, in system

? $°
u
theory, the uniqueness of the lifting is guaranteed by causality, the
lifting being in general not norm preserving, while for stationary
processes, the uniqueness is guaranteed by the lifting being norm

preserving. h

Viewing a linear time invariant system from the input-output point of

view makes the frequency response function the sole accessible object
containing all pertinent information about the system. As to the

information contained in the scattering matrix, we have the following:

4.5 Theorem. The scattering matrix S determines the density fyy(x)

up to the form




SRS ( )

v
. -

™
4. A
(4.2) K fyz( )K

where K is a constant pxp non-singular matrix, iff

(4.3) dim Ker TS = p

Proof. First note that for any representation of S

s = ¥yx’}

with the columns of X in Hz(Cp) and those of 1Y in H, «c?), the

columns of X belong to Ker T Moreover (on T)

.
Y*Y = (SX)*SX = X*X

Assume (4.3) holds. It thus follows that

(4.4) X = reEetHK

where K is a pxp full rank constant matrix. Thus,

2 X*@)X(2) = #K TN (@K = K*, (K :

N
1}
o

proving the 'if' part.
Now assume (4.3) not to hold, i.e., dim Ker TS >p . We can thus
find a pxp matrix X(el}‘) of full rank a.e. A such that the columns of

X belong to Ker T, and (4.4) does not hold. If we define

S

33
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1

- - —_ - *
then the columns of XY are in H2 (Cp) and S= XYX " with Y Y = X*X.

The result follows. <

That the scattering matrix determines f}!y up to the form (4.2) is
a natural consequence of the scattering framework. Indeed, for an
*
arbitrary non-singular K, the process g(n) = K y(n) whose density equals
*
f = Kf K
33 yy

induces the same scattering system (U,H,D_,D_) as the y process.

We next characterize condition (4.3) on a process level.

4.6 Proposition. We have

* - +
F+[Ker TS] = Hy (0):\H¥ (0) \

- y
E 1
- 1

Proof. Let 0 % feKer TS. From Lemma 4.3 it follows

lugtll = [ £ |

By Lemma 4.2, we obtain for £ = F:feH;(O)

Ilp_gll = {l&]l ,

and geH;,(O) . Thus

* - +
F, [Ker TS] C Hy(O)/\Hy 0

Tt em 4" T M N 8 8 Sema s A g oA At Besnesd . S
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Now let L;eH;(O)AH§(0). It follows from Lemma 4.2

H(F,6) = F.¢

Let f = F,geH,(CP). We obtain

- Mgt [l = Il Fell = llell ={[F el =1 £l
k and
.
- HH.f = f
P -
-
F Thus feKer TS which implies
- -
3 F,Hy (OAH_(0)] C Ker Tg .
= = -
The result follows. <
By the unitarity of F;
dim Ker T¢ = dim H&(O)AH;(O) ,

and since y is regular and of full rank we readily conclude

. - + . - +
d 0 = i ! =
im Hy( )AH¥ (0) = p iff dim H}_’ (0)“Hy(1) 0

4.7 Definition [9]. The process y is said to be completely non-

deterministic if

- +
Hy(o)AHy(l) = {0}




e
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As is well-known (see e.g. [36, p. 73]) for a regulai‘ maximal rank
process {X(n)}:, no y].(k) k21, j=1, ..., p can be predicted without
error based on the past H&(O). Being completely non-deterministic is
more restrictive; indeed, no value in H;Z (1) can be predicted without error

based on H-X(O).

Summarizing, we can restate theorem 4.5 in the following way.

4.8 Theorem. The scattering matrix S determines f__ up to the form

(4.2) iff y is completely non-deterministic.

4.9 Remark. It is of interest to observe that since for a completely

non-deterministic process, the eigenvectors of H.;HS

HHSH are only the columns of T, the projection of this eigenspace on the

corresponding to

first coordinate is not only onto, but also 1-1. In [4, Sec. 2] it is
shown that for any Hankel operator H : H2(Cp) - I—l_2 P satisfying this

condition, its unique minifunction is of the form
o) e = ”HH

Thus up to a constant multiple p >0 all minifunctions of such Hankel
operators are in 1-1 correspondence with regular, full rank, completely

non-determinstic processes.

4.10 Example. Let {y(n)}:chave rational density

2
¢ oy = LR@| z = et

where the polynomials P,Q have no zeros in |z| < 1 and are relatively

prime. Since fyye Ll’ the polynomial Q has its zeros in |z| > 1. Write

P = PIP2

.........................

EPR R P
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where P, of degree k has its zeros on T and P, in |z| > 1. For
k
Pl(z) = n (z=0.) , {OL].}k C T we have

=1 j=1

—————

1\
Prle) ik kK
——— = -H" 0 %
P.(e™) =1
Thus
7, P K _
(4.5) s = veH 2 ve= o, T=CDE T,
e j=1 )
where |Y| =1 and Y, is outer. In [5] Adamjan-Arov-Krein show that

(4.5) is the general form of unimodular minifunctions and that in this
case k+1 is the dimension of the eigenspace corresponding to the

singular value 1 = |[Hg || (5, Th. 2.2]. From Lemma 4.3 it readily

follows that this dimension equals dim Ker Ts . Thus *

- +
dim H_(0)AH_ (0) = k+1
im y( ) y()

We conclude that a regular process with rational density is completely

non-deterministic iff it has no zeros on T.

4.11 Example. Let {y(n)}_: have density

0<msf (AN)<$M<w a.e.
Yy

It readily follows that the outer factor '¢H_ and, moreover, 1/TeH_ .

+ This repro_duces a result of Bloomfield-Jewel-Hayashi [2, Th.11] .
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Now let geKer T , for arbitrary fe:H2

0= (T g0 = (7t gD = (B,
Since T is outer and g/Te H2, we conclude
g/ H, © *Hy = C
Thus,
Ker Tg = {AT : aeC}

and dim Ker Tg = 1. The process y is, therefore, completely non-

deterministic.

We now formulate a converse to Theorem 4.5. The question can be
posed as follows: Under what conditions is a function SeLm(B(C‘p )) a
scattering matrix of some full rank, p dimensional, completely non-
deterministic process. On an abstract level we first observe that any
SeLm(B(Cp)) which is unitary valued a.e. on T is the scattering matrix

of the canonical scattering system [2]

- P Y
= sH,cP) , D_ = HyCP),

= = p
U-—LX,H-LZ(C) » D,

The above questions amounts to characterizing all scattering systems
(U,H,D_,D_) for which there exists a set {él, . Ep} of linearly

independent vectors such that

H = span w" gj :j=l, ..., p, n=0, H, ...}

B e R
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(4.6) D, = span {Ung.: =1, ..., p, n 2 0}

o
"

span {Unz,j :§=1, ..., p, n< 0}

and such that any other linearly independent set satisfying (4.6) is of
cardinality p. The corresponding process will be

. %1 v"g
{g(n)}  where £(0) = , £(n) = : , and the spectral density is

& n
P Uép

o n€f-m,
133 da . p ¢ el

d(E.£.,5)
obtained by f_()) = (—m—ﬂ—> , {E
i,j=t,

being the resolution of the identity for U. The answer is given in the

following.

4.13 Theorem. Let SeL (B(CP)) be such that

6)) S(e”‘) is a.e. )\ a unitary map on cP ,

(ii) dim Ker TS = p

Then there exists a p-dimensional full rank completely non-deterministic

process y whose scattering matrix is S.

Proof. Let T 1‘2, ..., I'_ span the kernel of T, and define

1’ p S

P= [0yl .ov IT,]

Let




------------------------ Ly e R N T "

Since A] = Tr_(sl‘j) + ﬂ+(srj) = Tr_(Srj). j?l, ..., p, the columns of

A= (A [ Ay le.a|A)] are in H’z(cp) and by @)

M (z)ANzZ) = T (2) T(2) z=e

If we define

_ 1 _* i) i
fyy()\) = -2—1'], T (e )F(e )

the theorem follows provided we show that [' is outer and X.\ conjugate

outer. Let U = L and define:
,

\

D =V (™A, ..., PAcHD (P) , D = v U:OST, L., PST lcsH, (cP).
n<-1 A] P 2 " n20 1 P 2

Let

(4.7) H=(VU'D)V(VUD)

nez nez

It is easily verified that (3.1), - (i), (ii) holds for (U,D,). In
[2] Adamjan-Arov show [2, Th. 2.5] that a quadruple (U,H,D+,D_)
satisfying (3.1) - (i), (ii) and (4.7) has a scattering matrix .§ which

is unitary valued a.e. on T iff

A UnD+=H=V u™D
neZ nez

and, moreover, from their generalized functional model [2, Th. 2.1] we

need have

= H- (cP = 9 p
D_-H2(C), D+-SH2(C)

A straightforward computation (mimicking the one in section 3) gives 4




A
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............

..........

L i il aig e L Wi Ty Yk Tl g Sl Ml Sl Sl Rt SR ien & 4 e I A Shbuied hal EAMC AN M et Sl et Jhdh 2k T da ol A MR e e JANias R o ~‘T'T

41

and the result follows. <

4.14 Remark. We wish to comment here on a conceptual point. Note,
that the fact that S (or HS) are used subsequently in various model
reduction problems, and realization, is in no way contingent upon S

determining fyy . Indeed, in all those cases we use explicitly fyy in

that we are able to identify Fy() = i or F+¥(0) =T,




CHAPTER FIVE

BLOCK MATRIX REPRESENTATIONS

In order to economize notation, we will denote the matrix

& "
<(5i'“j)ﬂ>. . by <¢,n> , &£=| - },n={ " Also, as before,
1,j=1,...,p gp n.p

U.El

c
IF)
il

UEp

o«

) o +
Recall that {v(n)} {<(n)}, are the forward and backward

-0 !

innovation processes for {y(n)}_oooo . Let

Ty = <e@, L@)> i,jeZ .

By stationarity

Py

. = U0, U0 = <), U0 ==

ij i-j,0 °
Denote y
9
Yn = T'n+1,0 nez . :
|
]
We form the two-way infinite Toeplitz block matrix N
L

+ They are determined to within a choice of orthonormal bases in
in N_,N_ which we fix. See also Remark 3.8.

........................
................




A = . ‘{-2

\'_2

“1 Yo

Y-l (x 0)

Y_ 1 Yo

.

i3 Y9
" Yo

" To

—

.........

From the definition of the scattering operator via the innovations

representations we obtain for the Laurent operator L S (with respect to

the standard basis)

[Lg]

= A

As to the Toeplitz operator TS’ observe that with respect to the

orthonormal bases

vy, v, ...

in D’, D, the operator P__|D_ has the representation
D

[ <(0), 2(1)>'
<e(0), v(2)>'

<g(0), »(3)>'

and from lemma 4.2

[T =

<g(l), M(1)>'

<), M2)'

3

’ \)p(n) }n

, {= , , e
. l(n) Sz(n)

<e(2), L)>' |

ooooooooooooo

ooooooooooooo

y (n)}
p nz2
. i
IO ._l _2 .
x’l \0 .......
‘12 ...............

Similarly, for HS we note that with respect to the orthonormal bases
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{'.'\l(n)’ Vz(n)’ ceey \)p(n)} ’ {Cl(k)’ ez(k): veey €p(k)}

n<0 k>0

in D_, D, the operator P_P , has the matrix representation

] . T 7
<£(0) » \_)_(0)> <E(l) ’ \_)(0)>' <_E(2) ’ \_'(0)> Y_l N_z Y_3' b
<€(0), L (-1)>" <), v(-1)>' L. Lg Yog eereeees

T <o), w2 . U g

L . L .

so that by Lemma 4.2

[Hl = E .
Let
B } ]
Lely § [l
[LS] = | —mmmme- |
[Lglar | Mhglag
|

be the partition of [LS] corresponding to the orthogonal decomposition

L2(Cp) = HZ(CP) ® H—2 (Cp). By our previous considerations,

[Lgyy = [Hgl, [Lgly = [Tg)

{L is the matrix representation of the Hankel operator mapping

sl ,
H; (cp) - HZ(CP) taking f — n+(sf). Siwilarly, the Toeplitz matrix [LS]22

which represents the map H, c?) - H, (C?) takes fr1 (Sf). Combining

with Theorem 4.4, we obtain

........
--------
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5.1 Theorem. The scattering operator S has the two way infinite
Toeplitz block matrix representation
i
[TS] i *
L) = 7777~ FomTTTT
S i
[HS] i %%k
. -
where [HS] determines [LS] uniquely.
We next obtain a representation for [Hs] in terms of the moments
T
C_=<y(m), y(0> = [f )™ dreB(CP), nez .
n =YY Joyy
Using the representation of y(n) in terms of the backward and forward
innovations (Chapter 3), we obtain
(5.1) Cn = <y(n), y(0)> = <Z B(k) e(k+n), Z A(-m)v(-m)>
- - k=0 m=0
= - ' *o_
Direct computation gives
(5.2) ZB(k)B*(k-i—n) =C_ = zA(-m)A*(—m-m) n=0, 1,...
k=0 m=n
Form the triangular block matrices
............................................. et T e R L T T T e e T
SN N e o T e S e S S T




aone  am

BANE  u et

TLY TN T Ta TR TN

B'(0)
B'(1)

B'(2)

From (5.2)

B'(0)

B'(1)

B'(0)

A'(0)
A'(-1)

........

0

A'(0)

In accordance with (3.13), (3.15) we call B, A, the outer, conjugate

outer factorizations

e o~k
{C }y (C_ =CD.

]

Combining with (5.1) gives

of the Toeplitz form induced by the moments
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CHAPTER SIX

MARKOV PROCESSES AND UNITARY DILATIONS

In a Hilbert space setting, a centered stationary process {:_c(n)}"iw

x(n) = <xl.(n)> is said to be Markov if for all n 2 s

xni(n)

_ +
(6.1) PH;(S)X = PX(s)x erx(s) ,

where X(s) = span{xj(s) : j=1, ..., m}. In our setting, all stationary
processes will be generated by the shift U (on HX) associated with the y
process. Thus, for a stationary process {)_c(n)}_o:o (in H}') we will have
x(n) = Un;_c(O). It readily follows from (6.1) that one can define the
notion of a Markov subspace with respect to U in the following (see [23],

[371).

6.1. Definition. A subspace XCHX is said to be Markov with respect to

Adivar RIS AL AN s S B . g,
. P TN LRSS AP P
PR LN I B R « B

U if for all n>s, xeX

AN

-y -
| Jeeamn
L

(6.2) P, t"x =P U
vumx USX

Thus X is a Markov subspace with respect to U iff the process {Unx}c_coo
has the (weak) Markov property. In what follows a Markov process

{U"X}"_will invariably arise in this fashion.

..............




TY Y T EET. T

L pum oun

es Jadninsesn et e s

T VLYY

Pt S AR S st S AR A e P S

48

. +
We shall be interested in Markov subspaces (with respect to U)

XcC HZ for which

(6.3) {yl(O), yp(O)} cX

In this case X satisfies

H _ vu'x ,
Y——oo

and we say that X (or {UnX}:o) is of full range. There is a direct
relationship between Markov processes of full range and unitary dilations.
Recall [30] that a unitary operator U on a Hilbert space H is said to be

the minimal unitary (power) dilation of a contraction A on XCH if
A" = p_U" X nx0

and H = VU"X (minimality).

6.2 Proposition. XCHy is a Markov subspace of full range iff U (on

Hy) is the minimal unitary (power) dilation of

A=P UK : XX

Proof. From (6.2), we obtain for x,x'«X and m,nz0

(U ™%, U"x) = (UM%, PxUnx)

* We shall subsequently omit the phrase "with respect to U",

R A

P R IY

Pl ol A0

el

PRI Y
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Thus, denoting A(n) = PXUn]X, we obtain

(x, A(m+)x") = (x, U™ %) = U ™%, t"x) = (U Mk, PxUnx’) =

= (x, P UmPXUnx') = (x, AMA)X')

X

We conclude that A(m+n) = A(m)A(n) and

An) = A1) = A",

Since X is of full range, i.e., Hy = ??U“x, we conclude that U in Hy is the

minimal unitary dilation of A (in X). This proves the 'only if' part. The

7 vv"v,w-rv'

'if' part follows by reversing the argument. <

The semigroup A" }n>0= PxUn;X },o Will be called the Markov semigroup.

Much in the same way as for a regular process we make the following:

6.3 Definition. A Markov process {UnX}:oC Hy is said to be regular if

A VU™ =)= 4 v ukx
n<0 k<n n>0 k>n

We shall occasionally also refer to (the Markov subspace) X as being

regular.

The notion of regularity for a Markov process is intimately related to the

.vvvvvvv'vw. “yrYy
e e 3 Pt e

asymptotic stability of the static operator A (see Corollary 6.5 and

Theorem 6.11),

s The correspondence between Markov processes and scattering systems is

ﬁ established in the following:

6.4 Theorem. Let XCHy be a regular Markov subspace of full range.




P T T e T T N N N T R N I S R I EARCACA AR s Sl Al Mot St s e e PG S ” Y Padimndise £
q T
{
3
) 50 i
)
Then Hy decomposes and, moreover, uniquely into the orthogonal sum ]
f
(6.4) H =D_®X®D+ |

y

D) is a scattering system.

where (U, Hy’ D+,

Proof. Define

FETWTY S SN

D, = (V U'X)@x :'
>0 A
(6.5) n= N 4
D =(VUX)OX i
n<o0 B
We first show
] (6.6) UD,C D,
.
? Note that
S
A
g D,= V (d, -P,)Uu™x
!f + n20 Hy X
For arbitrary x,x'eX and n20

(Udy - P U, x) = (U™, %) - (UP U™, x) =
y b'e X

Ay xn - (UATK,x) = A"y %) - (AAPx.x') = 0

It follows that

up + X ,
. n . . *
and since UD+ C V U'X we conclude (6.6). Similarly, we obtain U DcD_.
n20 N
3
[
3
X
NS e .
e L e g e T T T s T




To prove that p + D, we note that it suffices to prove

D~V u™x
m<0

Since for arbitrary x,x'¢X, and n,m> 0

Ay - PU™x, U™x) = (W%, UMx) - (PyU%%, U™y =
. y

! = (Ammx,x') - (A™A%x,x") = 0

- the conclusion follows. To prove that A UnD+ = {0} observe that

VUlx =H < uPx" = (0 = RUN0D. @ D) = 0}

—00

(FU"D) ® (RU"D) = {0}

- 00

By regularity, we obtain that on the space K+ = vV U™X the operator
nz0
U $ = U|K + is an isometry having no unitary part (Wold's decomposition

[30, Th. I.1.1]). Moreover, from the structure of the space of the

minimal isometric dilation (of A) [30, section II.2], we obtain
= n+l *
K+=Z®U N N =D O UD
n=0
. . S n
Since X is of full range, we have l-ly = Z@ U 'N_ and

(6.7_  Vu"p = H,,

-00

In a similar way,
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7 vV ulp, =
(6.7, V', = H,
We therefore established that (U,Hy, ),»D_) is a scattering system. To
prove uniqueness, note that if )
— \ \
g H =D®X®D,
- . " J 1 !
is another decomposition, then UX «+ UD D D_ and, thus UXC X ® D_.
__ It follows DCX ©® D'+ , since D_+ X we obtain
3 D.c D
“i +
=
[ Similarly,
-
-
E D cD
; However, D @ D, = D'_@D'+ and uniqueness follows.
<

6.5 Corollary. A full range Markov subspace is regular iff *

A0, A*Mso (n+ )
strongly.

Proof. From the proof of the last theorem it follows that X is regular iff

(6.7) holds. Combining with [30, Th.II.1.2] gives the desired result.

6.6 Definition. A scattering system (U,H,D_,D_) for which

* For a finite dimensional X both convergences are equivalent.
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is called a Lax-Phillips (L-P) scattering system.

Let {UnX}i"m be an arbitrary regular Markov process of full range,
and (U,Hy,D+,D_)x its associated L-P scattering system. Let @x(e“‘) be
the corresponding scattering matrix. For the corresponding incoming

spectral representation F;(, we obtain from Proposition 4.1
- = " (P - - p

Since D+ + D

P
Oy € H_(B(C™))

To each regular full range Markov process there is thus associated
an inner function G)X, which is the scattering matrix of the corresponding
L-P system (U’Hy’D+’D—)X' According to Proposition 6.2 and Theorem
6.4, characterizing those inner functions amounts to characterizing all
those L-P systems (U,H,D+,D_) for which U on H is the minimal unitary
dilation of the contracticn A = PXU[X, X=HO (D ® D). By
[27, Th. III.1.1], U on H is a dilation, and combining with [2, Th.3.3],

we obtain

6.7 Proposition. The scattering matrices O associated with regular full
range Markov processes are those and only those inner functions

o€¢H _(B(CP)) for which

(6.8) o) || < 1 .
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An inner function GeHm(B(Cp)) satisfying (6.8) is called purely contractive

(30, p. 188]. For p =1, this amounts to being non-trivial.

Recall that the scattering matrix was defined up to left and right
multiplication by constant unitary matrices on CP. This follows from the
arbitrariness in choice of orthonormal bases in the forward and backward

innovation subspaces, and cannot be avoided. We make the following

6.8 Definition [30, p. 132]. 0eH (B(CP)), and ©,eH (B(CP)) are said

T, on cP

to coincide if for unitary maps T Ty

1,8 (2) 7 = 6(2) lz| <1

The equivalence relation between Markov processes is obtained by

=]

6.9 Definition. We say that the Markov processes {U"X}", {U“xl}

-0

are equivalent if @X’ OX coincide.

1
It readily follows from {30, Th. VI. 2,3] that the corresponding Markov
semigroups are unitarily equivalent.

While the correspondence

Xe—(U,H ,D

g Dy D)

X

is 1-1, the same does not hold for two distinect Markov processes may

EX’
have coinciding scattering matrices. However, as we shall see in the
next section, if we see (as we do in our context) two processes y, Y
as equivalent if they have the same density fYY then the above equivalence

relation is the right one.

Combining with Proposition 6.7, we obtain

6.10 Theorem. All equivalence classes of full range regular Markov

processes are parametrized by the inner functions GeHw(B(Cp)) such

SR i
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that ||6(0) ] < 1.

We next obtain a dynamical representation for a Markov process.

6.11 Theorem. Let X be a Markov subspace. Let {xl(O), ceey xk(O)}

(k < =) be a complete orthonormal basis in X. Then for x(n) = Un:_c(O) ,

x(0) = <x1:(0)> we have
x, (0)

(6.9) x(n+1) = [Alx(n) + [B]w(n) n

w
=]

where

+
() {wm))”_is a normalized = white noise vector

process of dimension p.

(ii) {w(n) }n>0 is orthogonal to x(0)

The above representation determines [A] (the matrix representation of

the state operator A) and [B] up to unitary equivalence.

Proof. Let (U, Hy, D,, D_)X be the corresponding scattering system.
Write D, =%: ® UnN+, N, the backward innovation subspace at t = 0
wl§0)
w5 (0)
basis in N, with w(n) = U"w(0). Since U"N <N, (n % 0) {w(nm)}" is

for D, dim N_ = p. Let the entries of w(0) = ( ) be an orthonormal

a normalized white noise process, and XJ-D+ implies that {y_v(n)}n>0 is

orthogonal to x(0). From (6.5)

UXC X@ N,

* Its covariance matrix equals 6(n)lcp.




and thus
(6.10) ij(O) = PXij(O) + PN+ij(0) = AXj(O) + PN+ij(0)
Let

aij = (Axl(o)’ x](O))H ’ bij = (Uxi(G), wj(O))H ’

y y

and define

[A] = (Qlj) ’ [B] = (bij) .
From (6.10)

x(1) = [A]x(0) + [BIw(0) |,

applying U to both sides gives

x(n+1) = [Alx(n) + [B]w(n)

Since the above representation is unique up to a choice of orthonormal

bases in X, N+ the theorem follows.

Phart .
'.'.'.“..A'l"‘t

<

]

The notion of equivalence between Markov processes is naturally manifested

in their dynamical representations:

T

6.12 Theorem. If {UnX}:o, {Unxl}:, are equivalent Markov processes
(with X as in Theorem 6.11), then Xl admits representation (6.9) for

some Xx

X,» W, playing the role of x, win Theorem 6.11.

[] ! .
Proof. Let (U, Hy, D+, D_)x, (U, Hy,D ,D_)xl be the corresponding
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scattering systems, and F;( , F;( the incoming spectral representations.
1
It readily follows that for the unitary operator

(6.11) L = (Fy y !

B
1 X
we have:

) L[Dt] =D't , L[X] =

(i) LAx = ALx xX,6 A= P.UIX, A = leu|x1

The result follows from the construction in Theorem 6.11.




CHAPTER SEVEN
MARKOVIAN REPRESENTATIONS AND FACTORIZATION

OF THE SCATTERING MATRIX

A regular Markov subspace X C HZ is said to be a representation

for the process y if
0, ..., y0)c X

Indeed, in this case we can write (notation as in Theorem 6.11)
y(0) = [C]1x(0)

for some matrix [C], and applying U to both sides gives

(7.1) y(n) = [C]x(n)

a dynamical representation for the regular process y in terms of the
regular (and necessarily full ranges) Markov process x. We first show
that equivalent Markov processes are indistinguishable provided we do
not distinguish between processes y, Y having the same spectral density

(and see them as equivalent).

7.1 Theorem. Let XC HX be a regular Markovian representation for y.

If {U“xl}f’m is equivalent to {U"X }1), there exists a process Y equivalent

to y for which X1 is a (regular) Markovian representation, and for which
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(7.1) holds (with y,, x playing the role of y, x).

Proof. Let L : Hz* HX be as in (6.11). By the properties of the

incoming spectral representation

Define (componentwise)
¥(0) = Ly(0) , y,(n) = U"y, (0)
We obtain
<X1(n), -‘11(0)> = <U"L}_r(0), Ly(0)> = <LU“X(0), Ly(0)> = <y(n), y(0)> ,
and therefore

f. ) =1 () a.e.
hAMA] Y
Since L[X] = X, , X, is a regular Markovian representation for y, and by
Theorem 6.12 (7.1) holds. <
By the last theorem and Theorem 6.12 we can translate the question
of finding all regular Markovian representations for y to LZ(Cp ). For

each inner function @eHw(B( Cp)) (as in Theorem 6.10) we consider the

orthogonal decomposition

Py - o™~ (P “«cP * P p
L,(cP) = ", (cP) @ ((H,(cP) © &', (cP)) ® HycP)

+ Note that the converse is trivial, see Theorem 6.12.
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inducing the L-P scattering system

y p p *ucPy!
(0 Ly€Py , Hy(ePy |, o7 Hy(CPy)
+

corresponding to the full range regular Markov subspace (with respect

to )
X = H;(cp) o) e*H;(cp)

Now recall that for the incoming spectral representation F_ (for

the scattering system associated with the y process)
Fy(0) =7~

Thus, finding all regular Markovian representations for y reduces to

the following:

++
Find all inner functions @leﬂm(B(Cp)) such that
(7.2) XaeH, (cP) © e Hy(cP)

7.2 Theorem. All regular Markovian representations of y are parametrized

by those and only those inner functions 31 for which

* The corresponding decomposition in which X = H «c® o OHZ(CP)
(the model space, cf. [37]) will not be used here since %ve wish HS to play
a central role.

A Since A is conjugate outer the corresponding Markov subspace will
automatically be of full range.

. o aam s s 4 e
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(1.3) s =o' 0,¢H (B(CP))

Proof. (7.3) holds iff GIYAeHZ(Cp) iff 6,8 I‘eHz(Cp). Since [ is outer

the latter holds iff GISSHz(Cp). Since OlSe L‘,‘,(B(Cp )) the result if‘ollows.<
The possibility of writing the scattering matrix S in the form (7.3) F

has an interpretation on a process level. By the Beurling-Lax theorem,

(7.3) holds iff (the invariant subspace for the left shift):

(7.4) H,(CP) © (range Ho) is of full range (for ).

++
By Lemma 4.2 this is equivalent to
(7.5) H (0) © Py- H§(0) is of full range (for U).
= Y
An Lw(B(Cp)) function satisfying (7.4) is called strictly non-cyclic ({12],

[15]1). The process y satisfying (7.5) (i.e., having a strictly non-cyclic

scattering matrix) is called strictly non-cyclic [29].

Recall that two inner functions U,VeHw(B(Cp)) are left coprime if for
no non-trivial {i.e., for no unitary matrix in B(Cp)] inner function W

we have

with Ul’ Vl inner. Let

LTI T

+ . N X . -
92 1s necessarily inner since S is unitary valued on T.

++ For the p = 1 dimensional case the equivalence of (7.4) and
(7.5) is due to Levinson-McKean [28].




A pa

be the (left) coprime factorization for S. For the inner function Ql we

have by the Beurling-Lax theorem

- u /P *® gr” P
range HS-Hz(C)@ Qle(C)

If = Ui"U2 is some other factorization, then we necessarily have for

some (non-trivial) inner function W
Up=wq, . U, =WQq,
Now observe that for inner functions Ul’ Ql in Hw(B( Cp))
* = AP * 0= AP
U1 HZ(C ) < Ql H2(C )
iff
* = P ~(~P
QlUl HZ(C ) C Hz(C ),
i.e., iff for some inner function W
(7.6) Ul = WQl
It follows that for the (regular full range) Markov subspaces

- 1 (cP * b~ (cP = H_(CP *H_(cP

b’
L'A‘A'A‘_A;A‘A_A LS e oA Bl S iR A B dhoa K B

follndndeanbond it

LN SN P PO R
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Thus, XQ is the smallest (setwise) regular Markov subspace
1

representing y. Let us call a regular Markov subspace XCHX representing

. . + . .
y minimal if no proper subspace of X ' is a Markovian representation of

y. Note that for the minimal subspace X, we have the orthogonal

9

decomposition
Py - a*u (P - P *. - ~P p
L,(cP) = q Hy(cP) ® (H,(cP) @ Q Hy(C?)) ® Hy(C?)

which under F_! goes to

s _ + + -
(1.7 HX -(Hy(O) 'S PH;(O) )@ PHX(O)HX(O) @ HX(O) e) HX(O) i

We established the following:
7.3 Theorem. Let y be strictly non-cyclic, and

S= QQ,

the (left) coprime factorization of S. Then the equivalence class of all
regular Markovian representations of y (or an equivalent process to it)
which corresponds to Q1 is minimal. This class is represented in

L2(Cp) by the subspace

, - u ¢cP * o 0Py -
‘\QI_HZ(C)GQI H, (C*) = range Hg .

* Which is necessarily regular.




64

For each such Markov subspace, there exists a process § equivalent to
+
y for which (7.1) holds.
In a similar fashion, one obtains that all factorizations

= *
S = U2U1

parametrize via the inner function U1

representing y. The minimal one is obtained by the (right) factorization

all regular Markov subspaces XCHX

S = P.P* and its representation in L (Cp) is X = H (Cp) ®P.H (Cp)
2°1 2 P1 2 172
(see footnote on page 60 ).
A number of observations are in order. First, note that the
general degree theory for strictly non-cyclic functions [15, Ch. III.5]
arises naturally in our context. All regular Markovian subspaces XCHX

representing y which are in the equivalent class parametrized by the

(purely contractive) inner function QGHW(B(CP)) will be of degree
(7.8) d(Q) =det Q ,

an inner function in Hm(its scalar multiple, see Nagy-Foias [30, p. 216]).

From (7.6) we obtain
d(Ul) = d(Ql)d(W) ;

and thus the degree of the minimal subspace is the lowest in the sense |
that d(Q) is the weakest (i.e., it is an inner divisor) among the degrees

of all other regular Markovian subspaces representing y. Second, we

Lol ettt

+
With £ playing the role of y, and H, = HX.
=2

T A A N S S L S NN,

.....




observe that by inspection {see (7.7)], all minimal Markovian subspaces
representing y are observable and constructible * and conversely, all
observable and constructible regular Markov subspaces representing y
are minimal. Moreover, we have exact observability and constructibility

iff range HS is closed.

* The regular Markov subspace X is said to be observable if
PXH;(O) = X, and constructible if P.H (0) = X. It is said to be

exactly observable or constructible if PXH;(O) =X, PXH;Z(O) = X
respectively. See [37]. B
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CHAPTER EIGHT
MODEL REDUCTION

The question of model reduction for stationary processes is
distinct in nature from the corresponding one in systems theory. In
the latter, model reduction has a natural formulation in terms of inputs

and outputs. Thus, the system is represented by a black box:

input — %] T ——®—— output

whose output yelz(-w, ; Cq) when inputed by uelz(—w, ; Cp) is given by

TRT LT

¢y = Lu ,

ACAER i)

where L: 12(-°°, w; CP) 1y (=%, «; c?) is a bounded causal [L12(0, «;cP)c
12(0, ; Cq)] Laurent operator (input-output map) with symbol

TeHm(B(Cp, Cq)) (frequency response function). The (minimal) state
space of the system, i.e., the lowest dimension of x in the dynamical

representation

o s e g,

x(n+l) = [Alx(n) + [Blu(n)

(8.1) ,
¥(n) = [C]x(n)

+ We assume T(0) = [0].
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+
equals rank HT = K. One way to formulate a model reduction problem

in this context is the following: Given T find a (system) function
'f‘me H_(B( Cp, Cq)) (with corresponding Laurent operator f’m) with rank
rank H.f S m<k, such that if the two systems were inputed by the

m
same u_slz(-co, -1; cp) up to time t = 0: -

- >

m [T Y,

for the corresponding outputs from time t = 0 onward : Yy @+e12(0,°°;cq),

we have

Hw.,._ w+l112 = min,

over all u_€l,(-=, -1;¢P), |ju ]| ¢ 1 (normalization condition). Taking

Fourier transforms, we readily obtain

min sup {{j(H-Hy )4>HL2: seH, P, ||¢HL2 < 1}
m

T
m

where the min. is taken over all 'f‘me Hw(B(Cp,Cq)) such that rank

H,f. < m. Thus, we have
m

*H

 being the Hankel operator from H;(Cp) = H,y(CY)
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min |[Hy - Hy || .
7 m
m

a classical Hankel approximation problem [7].

This input-output notion is not adequate in the context of stationary

sequences. While a realization

x(n+l) = [A]lx(n) + [B]lw(n)
(8.2) nz0
y(n) = [Clx(n)

resembles the one in systems theory, one should keep in mind that the
notion of inputs is absent, and the sequence {y(n)f:0 (or a sequence
equivalent to it) plays a distinct role. One approach close in nature to
the above model reduction formulation is to approximate this sequence.

We wish, however, to emphasize that while we formulate the approximation
problem geometrically in the space HX' the object we seek is the
approximating spectral density. Thus, all approximating sequences

which follow will 'live' in HX and will be, with respect to the unitary
operator U, on Hy. The resulting processes will be, therefore,

stationary correlated with y. Observe that approximating the sequence

{y(n) }:o or an equivalent sequence to it are thus indistinguishable.

Problem A. Let {X(n)}:o be the given process with (minimal)
representation (8.2), dim x = rank Hg = k <= Find a regular process
{f(n) } of dimension p such that for its corresponding (minimal)

representation
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x(n+1) = [A)%(n) + [B}w(n)
. n A nez,
y(n) = [Clx(n)
we have
(i) dimxgm<k |,
and, moreover
(ii) sup{llyj(n) - }7j(n)|| :j=1, ..., p, nez} = min.
H
Y
Assume first p=l. Let {y(n)} be a solution and X one of its minimal
regular Markovian representations (dim X <m). Define
y(0) = P;(y(O)
By the orthogonality principle, we obtain
~2 - ~ o 2L Ty 2 :
200y = [y - O[22 |ly©@ - @ [*= )
Clearly for the process
{U"§(0) : neZ}
the (minimal) state space is of dimension not exceeding m. By
stationarity
dm) = |ly - v || =1ty - Uty = £0)
and
200) = sup {|lym) - $) |2 : nezd 2 £(0)
We readily conclude
e e AT T S PAEAEARRT L A R
o S AT SOy T e e e e el L
PR SRR AL IR AP o :1.;’.5'.::-'.'_ A'A:’Lu L('._ L ._"‘ i"[.ﬂ'.vl‘;_ PRI ALY, -.-1_1_-.}‘. :'--'-{'. .{“ .!:'."'n":-_-‘ .S
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y(0) = P3y(0)

As for arbitrary p, we note that the above procedure extends componentwise

for each yj j=l, ..., p, and thus for the process y we need to have

v.(0) = PJy. i=l, ...,
y]() xy](O) i=l P

Our problem thus reduces (in the space HX) to the following:

Find a regular Markov subspace XCHX such that:

G) dim X < m
(8.3) -
(ii) max distH (y].(O), X) = min.
=, ..., p Y

Observe that if ¢ is the minimum above

©y), - ©p, 1= iy, ¥{(0) - (), y;0)]

s lyjny, y5(0) - v+ ityym) - yi(m), ¥;(0) < zec

Yi¥y

Thus for all n

p p
lc - €Il [(2a)2i§1 o;iyi]* = 23/3L=1 g 1]* '

Since 3; is regular and of full rank p, it follows from [30, Prop.
1.2.1] that X is of full range and, therefore, belonging to the equivalent
class of regular full range Markov subspaces parametrized by the

(purely contractive) inner functions OeHw(B(Cp)) for which d(0) [see




A
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(7.8)] is a Blaschke product of degree < m. From Chapter 7, (8.3)

translates in L2(Cp ) into finding a Q for which

max dist (X A, HJ(CP)OQ*H, C€P)) =min. , A=[A]...|A ] .
j=1,...,p LgcP) 172 2 1 P

8.1 Proposition. Let OGHW(B(Cp )) be an inner function and ch;(C p).
Then

P _ - g= 0 1maog.
H2(Cp)@ @*HZ(CP)

Proof. One readily checks that @*n+€geH;(Cp). Since

*

%* % -
g-0%n 0g = 0'[0g - 10g] = © [(1L2- m,)0g] = 01 geHz(Cp) ,
the result follows.
Now observe that

- * K N T _ * - _ X
A - @TT+@XA = O[OXA - 1r+0 YAl = O0'm_(GXA) = OHGSI‘

Problem A therefore admits the following equivalent formulation:

Problem A~. Find an inner function QeHm(B(Cp)) such that ||Q(0)]| < 1,

and the following holds:

+
i d@Q) <m ,
-9 Hg g | RSN
(ii) max H . = min. = Ll TY .
j=l,....p 51 L, 1 P

+i.e., the Blaschke product is of degree < m.
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We first establish the existence of Q solving (8.4) for the case p = I.

+
8.2. Theorem. There exists an inner function q of degree <m

such that

i (8.5) ”HqSI’H =min {[|H  T|l: u inner, degree u < m} .

Proof. Denote by § the infimum of the right hand side in (8.5) and let
{u }: be a sequence of Blaschke products such that HHu Sl > 8. The
n

family uy, u;, ... is uniformly bounded in {z| < 1, in particular, on

Ciir it ] . »
Aottt - e N

compact subsets of |z| < 1. It follows (e.g., [39, Th. 14.6]) that there

exists a subsequence {u_}~ converging uniformly on compact subsets
j i=0

of |z| < 1 to a function qeH_which is # 0. By a theorem of Rouché

(39, p. 242], it readily follows that if [a] < 1 is a zero of q, then there

exists a sequence {a_ }¥ in |z| <1 such that lim a = a and for some N
j =0

j+oo J

v
Z

u, (8, ) =10 ]
] ]

Since each u, has at most m zeros in |z| < 1, q has at most m zeros
in |z| <1. Let 0<r0 < 1 be such that q has no zeros in Ty < lz] < 1.
Applying once more Rouché's theorem, we conclude that for some integer
Ny, all u,, j2 N, have the same number of zeros in rgs |z| <lasaq,
i.e., none. This implies that the family {unj}j>N0 is holomorphic in a
region containing |z| < 1. We readily conclude that q is an inner function

having at most in zeros in |z| <1 and none on |z| = 1, i.e., a Blaschke

product of degree < m.

+ Clearly q is non-trivial.

......
.................
..............................
..................
------

.
-------
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As for general p, by a normal family argument one obtains a
subsequence O converging uniformly over compact subsets of |z]| < 1
[uniform topoloéy in B(Cp )] to an inner function Q. Applying the
argument of the above proof to the inner functions d(@n.) which converge
(uniformly over compact subsets of |z| < 1) to the inner function d(Q),
we conclude that Q is of degree d(Q) (a Blaschke product of degree) < m.
To show that it is purely contractive, we note that if for some 0 # geCp
[|Q(0)al| =|la]| then Q(z)geﬂz(cp) is a constant function and thus,
considering ||Q(z)al|¢H, we obtain o, ()a]| ~ [|Q(z)a|| uniformly over
compact subsets. By Rouché's theorem, this is impossible since the Gn.
are purely contractive. We conclude that Q is purely contractive. .

The solution obtained is not necessarily unique, and, moreover, it
is not obtained in a constructive fashion. A weaker version (which is
nonetheless no less interesting) is obtained by trying to minimize HH@SH
over all admissible 0. For the p =1 dimensional case, a constructive

solution can be obtained by employing the analytic properties of Schmidt

pairs for a Hankel operator [7]. Thus, since

s I 0T )

we have

min{||H T || : u inner, degree usm} s min{||H _||: inner, degree usm}-||T||

and we consider

+
Problem B. Find an inner function q such that

*+ This inner function q will be found to be non-trivial (see Theorem
6.10). )




a) degree g < m

(8.6) )
(ii) HHqsll = min .

We meake the assumption (which we later characterize on a process level)

that HS is a compact operator. Let

(H) 2

1= so(Hs) 2 s, (Hg

be the enumeration of its non-zero singular numbers (s-number)
repeated with multiplicity (which is finite by the compactness). These

are the positive square root of the eigenvalues of
*®
(H s] [H s]

If Hs is of finite rank k < =, 0 is an s~number with infinite multiplicity

and the enumeration will be

1= SO(HS) 2 oeee > sk_l(HS)>Sk(HS) = sk+1(HS) = ... =0.

8.3 Theorem. Let

. zsm_l(H) >sm(H)z... .

+
then there exists a unique q of exact degree m satisfying (8.6).

Proof. Denote by Bm the family of all Blaschke products of degree < m.

By a result of Kronecker (cf. [35]) for ¢eL  rank H¢s m iff ¢ = th

+ Up to coincidence.

DR
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with ueB , heH . Combining with Nehari's theorem, we obtain
inf |[H || =inf inf ||us -hljp =inf inf Jlus -h-ug|; =
ueBm ueBm heH °°ueBm g,heH ©
= inf inf ||(s-uh)-g||. = inf{||H - H ||: rank H < m} =s_(H)) .
geH, ueB Lo s v v m-s
heH

Now assume that U, u, satisfy (8.6). By Nehari's theorem we obtain for

some h,, h, e¢H
ks o]

1’ 72

) = gl =lws =yl = lls = Syl see

It follows that for the Hankel operators HG h (of rank <m) we have
i

IIHg - Hg, |l < |Is -Ejh.u =s (HJ) j=1,2,
i) Le
and, therefore,
s (H) = ||H, - H-. || =|lH - HZ ||
m''s s ulh1 s uzhzl

By a theorem of Adamjan-Arov-Krein [7, Th. 1.1] there exists a unique

Hankel operator H, of rank m such that || Hg - H, || = s (Hg). We
m m

conclude that

H = H- =

H-., .
¢m u1 hl u2h2




. o,
]

Let q be the inner function of degree m such that

range H¢m = H2 © qH2

It follows that q is an inner divisor of u; and u,. Since U, u, are of

2
degree <m we conclude that Y, Uy, q coincide which completes the

proof.

8.4 Remark. Note that for m = k = rank Hg the inner function q
coincides with the inner function q in the coprime factorization s = c—lqu

(see Theorem 7.3).

This q is induced by the unique rank m Hankel approximant Hq; via
m

X =H2@qH2

= range H
q ang

®m

On this Markov subspace in L2 (with respect to ¥), we project
F y(0) = 5T, and thereby obtain the approximating process y induced by

q. Indeed, in the space Hy we have

y(0) is obtained by

¥(0) =Py y(0)
q

and we set y(n) = U"§(0)

Incorporating (7], we thus have the following procedure of

constructing the approximating process y with its density f};}; which are




.............

7

induced by q:

Step 1. Let sm_l(Hs) > sm(Hs) have multiplicity up, and

51’ 52, ey gue 12(0, =; C) be the corresponding eigenvectors, i.e.,
* 2 .
[H1*[HODE, = sy (HOE, i=1,2, 0, 0.
Let

f.(z) = Z 5.(n)z"eﬂ2 i=1,2, ...,H
j s

Factor
f].(z) = u].(Z) w]-(z)

where Y is inner, wj outer. The desired function q is

q =ulAu2A ”'Auu ,

i.e., the greatest common inner divisor for the u]. [7, Th. 1.2}. By

Proposition 8.1 the projection of T onto Xq is given by

Step 2. Factor

‘-‘-'f-__._,.......‘

where % is inner, y, outer. Observe that

Y.—‘- " ,.' ." ." ." ." ' % ."v.“ ‘. "" '
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¢, = (ym, §(0>)Hy = Fym, £y, = O

n
(X We, We)
Thus we is an outer factor for

1 Crairy 2
fﬁ,(x) =5 |¢e(e )}

the density of the § process.
+
We next obtain a bound on the normalized difference

between the moments e, = (y(n), v0)), én = (y(n), y(0)) of the

corresponding y, y processes.

8.5 Proposition. We have

(8.7)

< 2sm(Hs) , n =0, *, ..

Proof. From the discussion preceding problem A. and the proof of

Theorem 8.3, we obtain

lym) - §m iy =I5 -y@ || = [[H T} s !
y 2 :

5

< gyl T 11 = sy Vg ‘

* To the variance Of'y = c, of the y process. .

......
...........
..




~

c -cC
n _n
c
0

- ’(y(m.y(o» - (&(n),ﬁ(m, .
- <
0

A

% [l(y(n), vy - y(@) + (ym) -y, §(0))l} <

/0_0/'?;-3

o

IN

sm(Hs) + sm(Hs)

We make a number of observations. First, observe that

Iy @ -y [l =T - &ully
y 2

Thus, we can not be seen as a rational approximation in L2 norm to the
outer factor I of fyy' If rank HS is infinite or otherwise if the singular
values drop sharply, (8.7) demonstrates that the process fr is a rather
good approximate to y. Second, we note that the assumption about
the compactness of Hg is not a necessary one. Indeed, the spectrum of
a bounded Hankel operator is the union of its point spectrum and its
essential spectrum {34]. The analytic properties of Schmidt pairs were
given in [7] for a general bounded Hankel operator and, thus, our
construction carries over to this case mutatis-mutandis. The multiplicity
u of sm(Hs), however, may be infinite in this case.

We now characterize the compactness condition on Hs on a process

level. For any two subspaces M, N of a Hilbert space H let

o(M,N) =sup{|'(f,g)HJ : feM, geN, |if]l,|lg]ll <1} .

It readily follows that ¢(M,N) = HPMPNH. If c<1, M,N are said to be
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at positive angle [22]. A process y is said to be strongly mixing
(Yaglom [43]) if

p(Hy (0), H;(n)) >0 (nsw)
i.e., its distant past and future are nearly orthogonal. It is known
(see e.g. [22]) that a regular process is strongly mixing iff the operator
P_P_is compact.

Combining with Lemma 4.2 we conclude by using [32]

8.6 Proposition. y is strongly mixing iff HS is compact, i.e.,

Se Hoo(B(Cp)) + C(B(CP)). *

Processes with rational density are thus strongly mixing. Helson-
Sarason [22] characterized the spectral density of (1 dimensional)

processes which are strongly mixing

fyy = |P|2 exp (u + v)

where u,v are continuous on T, v the Harmonic conjugate of v, and P
F is a polynomial with roots on T. In particular, densities which are

continuous and strictly positive are in this class.

P‘ 8.7 Remark. As for the vector generalization of the above construction,

we remark that if H¢ is the best rank m Hankel approximant to Hg,
m

M C(B(Cp)) denotes the continuous, B(Cp) valued functions f on
the drcle.
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the solution can be carried over provided we guarantee that ¢m is

strictly noncyclic, i.e.,

¢ = O'P

m

OGHOO(B(CP)) inner, PeHw(B(Cp)), and, moreover, ||0(0)|| < 1. We

did not find a way to guarantee it.
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